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Abstract

Equilibrium of a (quasi)brittle crack in a uniaxially loaded material with an infinite linear row of stress concentrators
is investigated. Dependence of the equilibrium crack length on the applied stress, internal loading, stress concentrator
size, distance between neighboring concentrators etc. is found. Evaluation of the ultimate tensile strength of material
with the linear row of voids, gas bubbles and secondary phase precipitates was carried out. © 2001 Elsevier Science

B.V. All rights reserved.
PACS: 62.20.Mk; 81.40.Np; 81.40.Cd; 46.30.N

1. Introduction

Fracture of many structural materials occurs through
crack nucleation and growth. The theory of crack be-
havior in mono-phase homogeneous materials has been
developed in detail but the results obtained are of lim-
ited relevance for description of fracture of advanced
structural materials with complicated multi-phase com-
position. Secondary phase precipitates, gas bubbles,
voids and their ensembles are common features of mi-
crostructure of modern structural materials. These in-
homogenities behave as stress concentrators. They can
significantly modify the stress field near the crack and
noticeably affect its nucleation and growth.

A number of studies have been carried out in order to
investigate crack equilibrium in stress fields modified by
stress concentrators, see e.g., [1-7]. The results published
in [1-6] were obtained for a solitary stress concentrator
and can be used only in the case of a dilute ensemble of
stress concentrators. However, sometimes ordered con-
figurations of stress concentrators are formed. Provided
the distance between neighboring concentrators is of the
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order of (or less than) their size, the collective behavior
of stress concentrators should be taken into consider-
ation. An example of such behavior for an infinite row
of gas filled cracks was investigated in [7]. However, it is
of interest to study the collective behavior of stress
concentrators of other shapes.

In the present paper crack equilibrium in the uniax-
ially loaded material with an infinite linear row of cir-
cular stress concentrators is investigated. Dependence of
equilibrium crack length on the applied stress, internal
loading, stress concentrator size and type and the dis-
tance between concentrators is evaluated. Reduction of
the ultimate tensile strength by linear arrays of voids,
gas bubbles and/or secondary phase precipitates is
demonstrated.

2. Problem set

Nucleation and equilibrium of a wedge crack in
strained multi-phase material is investigated in terms of
two-dimensional geometry (plain strain). Though in
general both the loading geometry and the shape of
stress concentrators are usually three-dimensional, the
simplification proposed here allows the qualitative be-
havior of cracks formed at stress concentrators to be
elucidated. Moreover, in certain cases the results

0022-3115/01/8$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0022-3115(01)00669-9



R.E. Voskoboinikov | Journal of Nuclear Materials 299 (2001) 68-76 69

~ L«/

Fig. 1. Geometry of the problem.

obtained within two-dimensional consideration are di-
rectly applicable for description of the relevant phe-
nomena, such as hydrogen embrittlement of zirconium
based alloys or crack formation at a chain of secondary
phase precipitates or gas bubbles at grain boundaries in
steels [8,9] under irradiation.

Let us consider a material with an infinite linear row
of circular stress concentrators of radius R. The centers
of stress concentrators in the row lie on the x-axis of a
Cartesian coordinate system. The distance between the
centers of neighboring stress concentrators is L,
2R <L <oo. A (quasi)brittle crack of Ilength |/
0< /<L —2R is formed on a stress concentrator in the
row. The crack is treated here as a cut along the x-axis.
The origin O of the coordinate system is chosen in the
center of the crack. The material is loaded with uniaxial
stress o along the y-axis. The surfaces of stress concen-
trators and crack are loaded with normal stress P, and
P, respectively (see Fig. 1). The stresses P, and P, are
assumed to be positive provided they are directed out of
a concentrator or the crack.

3. Governing equations

Mechanical stability of a material with a crack of
length / requires the force balance at the crack surface to
be fulfilled:

(;ifnf|s+Pi(x) :07 (i,j:x,y),
S (—1/2<x<1/2,y =0), (1)

where n is a unit vector of the outward normal to the
crack surface S; P(x) is the total force acting at the crack
surface. Absence of a shear stress resulting from the
symmetry of the problem makes it possible to reduce
Eq. (1) to the following form:

ay(x) = —P(x),

where P(x) is the component of the total force P(x)
normal to the crack surface. In our case P(x) can be
written as

P(x) = =P, — app(x) + S(h(x)). )

Here S(x) is the adhesive force acting at the crack tip of
length d, a < d < L, where a is the interatomic distance
[10]. Stress agge(x) is acting in the plain y =0 in the
loaded material without crack. The first two terms of the

. . . 2 .
expansion of stress ggy(x)|,_, into series over (R/L)" is
given by [11]

() = o () + o () 7. )
where
=3+ (1+3) (5) +(ety) |
and
ti-2((12) ()
2P R \*
(7 (a) )

where
Ox)=x+R+1/2—nL, n=0,£1,£2,4+3 ...
nL—(L/24+R+1/2)<x

<(m+1)L—(L/24+R+1/2). (4)

The condition of mechanical stability of a crack in a
strained material is given by the following equation (see
e.g., [12]):

iz ay(x)dx _
/4/2 VEZ42 0 ®)

4. The condition of mechanical stability

In order to describe the dependence of the equilib-
rium crack length on internal (size and type of stress
concentrator, distance between neighboring concentra-
tors etc.) and external (applied stress) parameters the
following non-dimensional variables are defined:

2x 2R 2L
=— =—, A=—. 6
=, P= ; (6)
Substituting Egs. (2), (3) and (6) into (5) and carrying
out integration, the condition of mechanical stability is

obtained in the following form:

V2K o
*7+W(G+Pz) + <§+P1)12(P,)~)
n 370—14(p, 1)+ 2. )% =0, (7)
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where K is the stress intensity factor [13], defined by
< S(h(x))
K = / ——~ dx; 8
0 VX ®)

function Q(p, 1) is given by
2

Q(p. 2) = % (nlo +2P) + 2012(p, 1)

+3(2P, — o)l4(p, 1)), 9)
and functions 5(p, 1) and I4(p, A) are equal to
f' pdy
o121
L(pr1) =1

4/2—(p+1) pdy

Lp,7) =1 J Y (10)

/‘1 p*dy

2=+ (pinr1-a2 /12

f—(p+1)<I
and
f‘ ptdn
oty /1-2”
i—(p+1)=1

A/2—(p+1) p*dy

Lip, 2y =4 [1 Ty 7 (11)

! p*dy
+ fﬂ/z*(%’*l) (p+n+1=0)* /1=’
L—(p+1)<I

respectively. The condition /2 — (p+ 1)1 arises
from the definition of stress ogy(x), see Egs. (3) and
(4). While /2 — (p + 1) <1, the whole crack falls into
the region that corresponds to n = 0 in expression (4).
Otherwise a part of the crack (from /2 — (p+1) to
1) falls into the neighboring region (n =1) and the
expressions for the integrals (10) and (11) become
more complicated.

The integrals in Egs. (10) and (11) can be expressed in
elementary functions (see [14] for details) but the results
are too lengthy and not given here. Both integrals tend
to zero at p — 0 and to m at p — oc.

The criterion of mechanical stability of the material
with crack of length / written in form (7) covers several
particular cases developed earlier.

1. In the case of the classical problem of equilibrium
of a crack in a uniform isotropic material loaded with
uniaxial stress ¢ one should set both the size of stress
concentrators and the normal stress at the crack surface
equal to zero (p =0 and P, = 0). The criterion of me-
chanical stability (7) is then reduced to

V2K

ﬁ—no’:& (12)

The critical length /, of the isolated crack is equal to

2
— ng

=— 1
o (13)

g

where g, = ¢ is the applied stress and K, is the critical
stress intensity factor of a Griffith-—Inglis crack in an
elastic solid [13,15]

vE

BTy

(14)

where 7 is the specific energy of the crack surface, E and
v are Young’s modulus and Poisson’s ratio, respectively.

2. In the case of an isolated gas-filled crack in a
uniform material (p = 0, P, # 0) condition (7) is reduced
to

V2K
ava]

=0+ b (15)

Expression (15) coincides with that obtained in [16].

3. The condition 4 — oo reduces the problem under
consideration to that of the equilibrium of a
(quasi)brittle crack formed at an isolated stress con-
centrator in a material subjected to uniaxial loading.
The criterion of mechanical stability of the crack in this
limiting case is given by

f% +n(o+ Py) + (% +P1)Iz(p) + 37614@) =0.

(16)

The condition 1 — oo reduces functions 1,(p) and I4(p)
to the following limits:

lim 1,(p) = I5°(p)

:/1 p*dy
S (pHn+ 1T =9

2 +1
:an)/z (17)

[p(p +2)]

and
1 4

. ‘ ptdn
lim 7 = :/
lim L(p) = 1;"(p) PRI

Pllo+1) 3+20p+1)°
p(p+2))"* 2lp(p+2)]

respectively. The corresponding problem was treated in

[6).
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5. The ultimate tensile strength of material with infinite
row of stress concentrators

Let us rewrite condition (7) of mechanical stability in
the dimensionless form:

1 e s B [2(p7)”)
\/E+(s+6g>+(2+ag) n
3s

™

where Qq4(p) is equal to

as(p) = (x(s+ 2 ) + 25106,

Og

+ 3(6—1: - s)14(p, z)) (20)

where ¢ =1/l, is the dimensionless crack length, and
s = g/, is the dimensionless external loading. The ratio
of the ultimate tensile strength of material with linear
row of circular stress concentrators to that of the uni-
form material is equal to dimensionless stress s. corre-
sponding to & = 1:
= { 1— [i + ﬂ M
6y 0Oy T

2 2
(), 202
3 o, T A

J{i4blp),

2n 2n
2 2
n 2

6
The stress required to initiate crack nucleation (p > 1)
is given by the following relation:

P+P 1P 4P 2
{2
o, pog 3 oy p) A

JE-0-5%)5)

hs)

[S)

+

L PAtR 4P
3 G'E 3 0,2

2 _ 2
p 9ag 27 Oy A

6. Effect of the row on the crack nucleation

It is well known (see e.g., [1-6]) that solitary stress
concentrators can facilitate crack nucleation. According
to Eq. (22) the row of stress concentrators increases this
effect. Dependence (22) of dimensionless stress required
for crack nucleation at a stress concentrator in the row is
shown in Fig. 2.

It can be seen that a row of voids does not affect the
nucleation of the crack. Stress required to initiate crack

s
C
void
1/3 —_—— -
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3
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3
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3 ~ Precipitate
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Fig. 2. Dependence of the dimensionless stress s. required for
crack formation at a stress concentrator from the row vs. p?/
ratio (the terms with p~' are neglected here). The normal stress
P, takes on the values P' and P”, where P’ /o, < 3/(3 + n*) and
P'/6, >3/(3+n*) for precipitates; P'/o, <3/(6+n*) and
P/, >3/(6+ ) for gas bubbles.

nucleation in this case is independent of the distance
between neighboring voids and is equal to that for an
isolated void (s = 1/3), see Fig. 2. This occurs because
in the case of voids the contribution of the row to the
stress tensor gy(x) is of the order of (R/L)* [7], i.e.,
beyond the accuracy adopted here. The effect of the row
on the crack nucleation is weak until L > 2R+, 6 < R
and rapidly decreases with increase of the distance be-
tween neighboring voids.

On the contrary, the row of gas bubbles (P =
P, = P) or precipitates (P, = p > 0, P, =0) can notice-
ably reduce applied stress required to initiate crack
formation. In Fig. 2 the dimensionless stress at
p?/2* = 0 corresponds to crack nucleation at a solitary
gas bubble or precipitate. Increase of the ratio p2/1*
decreases the stress.

Normal stress P; acting on the row of gas bubbles or
precipitates can lead to spontaneous crack nucleation
provided:

P1 3
3K+n2
230k ay
27 4n2/3P /o,

(23)

where k = 1 for the case of secondary phase precipitates
with normal stress P, = p > 0 acting at the precipitate—
matrix interface and x = 2 for the case of gas bubbles
with internal pressure P, = P.

7. Practical applications
7.1. Voids

Nucleation and growth of ensembles of vacancy
voids is a common feature of structural materials under
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irradiation. It is known that degradation of service
properties of these materials takes place due to forma-
tion of voids.

Let us evaluate the ultimate tensile strength of
uniaxially loaded material with infinite row of circular
voids. There is no normal stress at the surface of void
and crack, i.e., P, = P, = 0. According to Eq. (21) the
ultimate tensile strength in this case is

Se = 1+12(p7)“)+314(p7)")
2n 2n

2 2
6 b b )

Dependence of s(p, 1) is shown in Fig. 3. Several typical
cross-sections of the surface s.(p, ) are given in Fig. 4.
Curves 4 and 5 in Fig. 4 correspond to large distances
between the neighboring voids (4 > 1). In this case the
row represents dilute ensemble of voids and the problem
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Fig. 3. Dependence of the ultimate tensile strength s.(p, 4) of
uniaxially loaded material with row of voids.
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Fig. 4. Typical cross-sections of the surface s.(p, ) shown in
Fig. 3.

of crack nucleation and growth can be treated within the
approach developed in [6]. Reduction of the distance
between neighboring voids increases the influence of the
row on the crack evolution and facilitates crack growth
in comparison with that of the crack formed at an iso-
lated void. As a result the ultimate tensile strength of the
material is decreased (see curves 1-3 in Fig. 4). In the
case when the distance between surfaces of neighboring
voids tends to zero one should be careful because in this
case the adequate evaluation of the ultimate tensile
strength of the material requires the account of addi-
tional terms in expansion of ay(x) (see Eq. (3)) into
series over (R/L)’.

7.2. Gas bubbles

Irradiation of a material with fast particles can result
not only in its supersaturation with point defects, but
may sometimes produce non-equilibrium concentration
of gas (e.g., helium) atoms due to transmutation nuclear
reactions and/or direct a-particles implantation. Super-
saturated multi-component solid solution of gas atoms,
self-interstitials and vacancies decays with gas bubble
ensemble nucleation and evolution [17]. It is generally
accepted that high temperature irradiation embrittle-
ment arises because of helium bubble ensemble forma-
tion.

Let us evaluate the ultimate tensile strength of
strained material with an infinite row of gas bubbles.
Because of the presence of gas, internal surfaces of
bubbles and the crack are loaded with normal stress
P, = P, = P. The normalized ultimate tensile strength s.
in this case is given by the following relation:

SC:{1_£[1+M
Og T

3y

Lip,2) | 3la(p,4)
/{1+ 2n * 2n

+6<1+ ! 2O 5L (25)

Dependence (25) of the ultimate strength s.(p,1) is
shown in Fig. 5. It was found [6] that the volume of
formed crack can be neglected in comparison with that
of the bubble for all application relevant cases. So, the
internal pressure can be assumed invariable during the
crack formation and growth.

Several typical cross-sections of the surface s.(p, 1)
are given in Fig. 6. Curve 5 corresponds to the case of
large inter-bubble distance (4 >> 1). Effect of the row
becomes apparent for very large gas bubbles only
(p > 1). For relatively small gas bubbles the influence of
the neighborhood can be neglected and the problem can
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Fig. 5. Dependence of the ultimate strength s.(p, ) of uniax-
ially loaded material with row of gas bubbles. Internal gas
pressure P = 0.20,.
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Fig. 6. Typical cross-sections of the surface s.(p, A) shown in
Fig. 5.

be treated in the assumption of a solitary bubble [6].
Reduction of the distance between centers of neighbor-
ing bubbles results in increase of the row effect (curves
1-4 in Fig. 6). At large p*//* ratio spontaneous nucle-
ation of crack at a bubble in the row can occur (the
ultimate tensile strength falls to zero value, see down-
ward excursion of the surface s.(p,4) in Fig. 5 and
curves 1-4 in Fig. 6). In the opposite case of very small
gas bubbles (p — 0) the effect of the row on the crack
evolution is weak and we can neglect both the row and
the bubble influence. The problem reduces to that of gas
filled crack in the uniform material [16]. This is the only
case when the volume of the crack cannot be neglected.

7.3. Secondary phase precipitate

In order to improve service properties, materials are
often doped and subjected to thermal treatment. Men-

tioned material processing techniques can result in sec-
ondary phase precipitation. High environment
temperature and fast particle irradiation can also acti-
vate diffusion redistribution of material components and
lead to formation of secondary phase precipitates. Very
often spatial distribution of precipitates is not uniform.
They can form ordered ensembles at grain boundaries,
triple grain junctions, etc. In general the effect of pre-
cipitation can be both positive and negative [6].

7.3.1. Effect of precipitation on crack nucleation

Normal stress P, = p acting at the precipitate—matrix
interface influences significantly the nucleation of wedge
crack at a precipitate from the row. Dependence of the
crack nucleation load on p?/4? ratio is shown in Fig. 7.
The dependence is drawn for several values of normal
stress p at the precipitate-matrix interface. It is clear that
when p > 0 the crack nucleation at a precipitate in the
row is facilitated, i.e., the situation is similar to crack
nucleation at the row of gas bubbles or voids, see Fig. 2.
However, in contrast to bubbles and voids, secondary
phase precipitates can create tensile stress (negative
within current consideration) in the surrounding matrix.
In this case the effect of the row becomes more com-
plicated, see Fig. 7. Facilitated nucleation of crack at a
precipitate from the row occurs provided

)4

= ~04

Jg<3+n2 0.47 6
¢ 2ol

A2 < 4n?/3p/ay’

is satisfied. (Here the absolute value of tensile stress p is
implied.)
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Fig. 7. Dependence of the dimensionless stress s. required for
crack formation at a precipitate in the row vs. p?/ 2% ratio at
different actual stress at tte precipitate-matrix interface. Here
the normal stress P; takes on the following values: P, = p” (o),
pP'log >3/(3+7%); P =p (0), where p'/o, <3/(3+n?);
P = —p ($) tensile stress at the precipitate-matrix interface;
P =—p" (1), where p" /o, > 6/(3 + 1i%).



74 R.E. Voskoboinikov | Journal of Nuclear Materials 299 (2001) 68-76

7.3.2. The ultimate tensile strength of material with
precipitates

Below we evaluate the ultimate tensile strength of a
material with an infinite row of secondary phase pre-
cipitate. Normal stress is acting at the precipitate-matrix
interface: P, = p, while normal stress acting at the crack
surface is absent (P, =0). The normalized ultimate
tensile strength is given by the following relation:

sc:{l—ﬁ[M

[ s

2 2
3 b1 )

L(p, ) 3L(p,)
/{1+ 2n * 2n
n 212(P,;L) 314(107/1) p2
(12D Ny

Modification of strength properties by secondary phase
precipitates depends on the local stress field around the
precipitate. Presence of the row of precipitates results in
reduction of the ultimate tensile strength provided nor-
mal stress at the precipitate-matrix interface is directed
out of a precipitate (p > 0), i.e., precipitates ‘compress’
surrounding matrix. Tensile stress (p < 0) at the pre-
cipitate-matrix interface can either decrease or increase
the ultimate tensile strength of the local region con-
taining precipitates.

Reduction of the ultimate strength s.(p, 1) due to
presence of the row of precipitates with positive normal
stress P, = p > 0 is similar to that for the row of gas
bubbles (see Fig. 5 and Eq. (6)). The main difference is in
zero magnitude of the normal stress P; in the case of
precipitates that affects the actual value of the ultimate
tensile stress but does not change the general behavior.

Dependence of the ultimate strength on tensile stress
produced by the row of precipitates in the surrounding
matrix is more complicated. It was shown above that it
can suppress nucleation of the crack at a precipitate in
the row. The ultimate tensile strength of the material vs.
normal stress p and the distance between neighboring
precipitates is shown in Fig. 8. Several surfaces s.(p, 4)
with different values of normal stress P; = p are built up.
Dependence Fig. 8(a) and corresponding typical cross-
sections Fig. 8(b) are built up for normal stress
p = —0.20,. The shape of the surface s.(p,1) signifi-
cantly changes in comparison with that for normal stress
p =020, (see Figs. 5 and 6). For large distances be-
tween neighboring bubbles (4 >> 1) the qualitative be-
havior in the cases p =0.20, and p = —0.20, looks
similar, i.e., facilitated ! nucleation of crack at the pre-
cipitate surface occurs and the effect of the row of pre-
cipitates falls with crack length increase (when p — 0).

! In comparison with the uniform material.

However, the absolute value of applied stress resulting in
crack formation is higher in the case of tensile stress
p = —0.20, in comparison with that for p = 0.20,. The
principal difference occurs with the decrease of the dis-
tance between the precipitates. In the case of ‘positive’
stress at the precipitate surface the spontaneous crack
nucleation can occur, see Figs. 5 and 6. In the case of
tensile normal stress at a precipitate surface the spon-
taneous nucleation is impossible.

Further increase of the actual tensile stress at the
precipitate-matrix interface up to p = —g, results in
additional modification of the surface s.(p, 1), see Fig.
8(c) and (d). Curve with diamonds in Fig. 8(d) corre-
sponds to large distance between precipitates. Nucle-
ation of crack in this case is impeded by tensile stress
field in the surrounding matrix, see Eq. (26). If a pre-
cipitate radius is not large, the presence of the row of
precipitates results in reduction of the ultimate tensile
strength, see curve with down triangles and up triangles
in Fig. 8(d). However decrease of the distance between
precipitates leads to reduction of p values region where
sc 1s less than 1. Nucleation of crack on a precipitate is
prohibited by stress field formed around the row. De-
crease of the distance between precipitates (curves with
circles and squares in Fig. 8(d)) leads to effect of local
strengthening of the material region containing the row
of precipitates. In this case the ultimate tensile strength
in the vicinity of the row of precipitates is higher than
that for the uniform material.

Figs. 8(e) and (f) illustrate the case of the tensile stress
p = —20, at the precipitate-matrix interface when nu-
cleation and evolution of crack are suppressed for any p
and 7 values.

8. Summary

The problem of crack formation at a linear array of
stress concentrators is considered. In terms of the force
balance approach a general equation for the crack length
as a function of external and internal parameters is
obtained. In the case of a critical crack this equation can
be used for evaluation of the ultimate tensile strength of
material with a linear row of stress concentrators.

The ultimate tensile strength of material with the row
of voids, gas bubbles or secondary phase precipitates is
found. The relative degradation of strength properties as
a function of size of stress concentrators in the row, the
distance between neighboring stress concentrators and
the normal stress acting at a stress concentrator surface
is established. It is shown that the presence of the row of
voids and gas bubbles facilitates crack nucleation and
growth in comparison with the case of crack formation
at a solitary gas bubble or void. Favored crack nucle-
ation and evolution also occurs in the case of the row of
secondary phase precipitates provided the normal stress
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Fig. 8. Modification of the surface s.(p, 2) with increase of tensile s

tress p at the precipitate-matrix interface. Figures (a), (c), (e)

represent dependence s¢(p, 1) at p = —0.20,, p = —0, and p = —2a,, respectively. Corresponding typical cross-sections are shown in

figures (b), (d) and (f).

at the precipitate—matrix interface is directed out of
precipitates. Spontaneous crack nucleation is possible if
either the pressure (for gas bubbles) or the normal stress
(for precipitates) is high enough: P/g, >3/
(64 7?) ~ 0.19 for gas bubbles; p/a, >3/(3+n*) =~
0.23 for precipitates and the distance between the

neighboring stress concentrators is relatively small (see
Eq. (23) for details). The corresponding values are
P/g, = 0.5 for a solitary gas bubble and P/s, > 1 for
solitary precipitate.

More complicated dependence of crack nucleation
and growth takes place for precipitates that generate
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tensile stress field in the surrounding matrix. Spontane-
ous crack nucleation is impossible in this case. Facili-
tated crack nucleation and growth of crack at the
precipitate in the row occurs provided p/g, <6/
(3+ %) &~ 0.46 (p/o, <2 for the solitary precipitate).
The effect of the row can vary from positive (impeded
crack nucleation) to negative (facilitated crack growth)
during crack evolution provided 6/(3 + n*) < p/o, < 2.
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